Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667312

RESUMEN

The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.


Asunto(s)
Nanopartículas , Animales , Ratones , Células 3T3 NIH , Nanopartículas/toxicidad , Nanopartículas/química , Células RAW 264.7 , Supervivencia Celular/efectos de los fármacos , Holografía/métodos , Imágenes de Fase Cuantitativa
2.
Arch Med Res ; 54(6): 102855, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481823

RESUMEN

BACKGROUND AND AIM: While preliminary evidence points to pro-tumorigenic roles for the Musashi (MSI) RNA-binding proteins Musashi-1 (MSI1) and Musashi-2 (MSI2) in some breast cancer subtypes, no data exist for inflammatory breast cancer (IBC). METHODS: MSI gene expression was quantified in IBC SUM149PT cells. We then used small interfering RNA-based MSI1 and MSI2 double knockdown (DKD) to understand gene expression and functional changes upon MSI depletion. We characterized cancer stem cell characteristics, cell apoptosis and cell cycle progression via flow cytometry, mammospheres via spheroid assays, migration and proliferation via digital holographic microscopy, and cell viability using BrdU assays. Chemoresistance was determined for paclitaxel and cisplatin with MTT assays and radioresistance was assessed with clonogenic analyses. In parallel, we supported our in vitro data by analyzing publicly available patient IBC gene expression datasets. RESULTS: MSI1 and MSI2 are upregulated in breast cancer generally and IBC specifically. MSI2 is more commonly expressed compared to MSI1. MSI DKD attenuated proliferation, cell cycle progression, migration, and cell viability while increasing apoptosis. Stem cell characteristics CD44(+)/CD24(-), TERT and Oct4 were associated with MSI expression in vivo and were decreased in vitro after MSI DKD as was ALDH expression and mammosphere formation. In vivo, chemoresistant tumors were characterized by MSI upregulation upon chemotherapy application. In vitro, MSI DKD was able to alleviate chemo- and radioresistance. CONCLUSIONS: The Musashi RNA binding proteins are dysregulated in IBC and associated with tumor proliferation, cancer stem cell phenotype, chemo- and radioresistance. MSI downregulation alleviates therapy resistance and attenuates tumor proliferation in vitro.


Asunto(s)
Neoplasias Inflamatorias de la Mama , Neoplasias , Humanos , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proliferación Celular , Proteínas de Unión al ARN/genética
3.
Front Toxicol ; 4: 974429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36171865

RESUMEN

Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA ("biomaterial risk management") an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 "benchmark" nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.

4.
Drug Deliv Transl Res ; 12(9): 2187-2206, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35794354

RESUMEN

Nanotechnologies such as nanoparticles are established components of new medical devices and pharmaceuticals. The use and distribution of these materials increases the requirement for standardized evaluation of possible adverse effects, starting with a general cytotoxicity screening. The Horizon 2020 project "Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE)" identified in vitro cytotoxicity quantification as a central task and first step for risk assessment and development for medical nanocarriers. We have performed an interlaboratory comparison on a cell-assay matrix including a kinetic lactate dehydrogenase (LDH) release cell death and WST-8 cell viability assay adapted for testing organic nanocarriers in four well-characterized cell lines of different organ origins. Identical experiments were performed by three laboratories, namely the Biomedical Technology Center (BMTZ) of the University of Münster, SINTEF Materials and Chemistry (SINTEF), and the National Institute for Public Health and the Environment (RIVM) of the Netherlands according to new standard operating procedures (SOPs). The experiments confirmed that LipImage™ 815 lipidots® are non-cytotoxic up to a concentration of 128 µg/mL and poly(alkyl cyanoacrylate) (PACA) nanoparticles for drug delivery of cytostatic agents caused dose-dependent cytotoxic effects on the cell lines starting from 8 µg/mL. PACA nanoparticles loaded with the active pharmaceutical ingredient (API) cabazitaxel showed a less pronounced dose-dependent effect with the lowest concentration of 2 µg/mL causing cytotoxic effects. The mean within laboratory standard deviation was 4.9% for the WST-8 cell viability assay and 4.0% for the LDH release cell death assay, while the between laboratory standard deviation was 7.3% and 7.8% for the two assays, respectively. Here, we demonstrated the suitability and reproducibility of a cytotoxicity matrix consisting of two endpoints performed with four cell lines across three partner laboratories. The experimental procedures described here can facilitate a robust cytotoxicity screening for the development of organic nanomaterials used in medicine.


Asunto(s)
Nanopartículas , Línea Celular , Supervivencia Celular , L-Lactato Deshidrogenasa/metabolismo , Nanopartículas/toxicidad , Estándares de Referencia , Reproducibilidad de los Resultados
5.
Drug Deliv Transl Res ; 12(9): 2207-2224, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35799027

RESUMEN

State-of-the-art in vitro test systems for nanomaterial toxicity assessment are based on dyes and several staining steps which can be affected by nanomaterial interference. Digital holographic microscopy (DHM), an interferometry-based variant of quantitative phase imaging (QPI), facilitates reliable proliferation quantification of native cell populations and the extraction of morphological features in a fast and label- and interference-free manner by biophysical parameters. DHM therefore has been identified as versatile tool for cytotoxicity testing in biomedical nanotechnology. In a comparative study performed at two collaborating laboratories, we investigated the interlaboratory variability and performance of DHM in nanomaterial toxicity testing, utilizing complementary standard operating procedures (SOPs). Two identical custom-built off-axis DHM systems, developed for usage in biomedical laboratories, equipped with stage-top incubation chambers were applied at different locations in Europe. Temporal dry mass development, 12-h dry mass increments and morphology changes of A549 human lung epithelial cell populations upon incubation with two variants of poly(alkyl cyanoacrylate) (PACA) nanoparticles were observed in comparison to digitonin and cell culture medium controls. Digitonin as cytotoxicity control, as well as empty and cabazitaxel-loaded PACA nanocarriers, similarly impacted 12-h dry mass development and increments as well as morphology of A549 cells at both participating laboratories. The obtained DHM data reflected the cytotoxic potential of the tested nanomaterials and are in agreement with corresponding literature on biophysical and chemical assays. Our results confirm DHM as label-free cytotoxicity assay for polymeric nanocarriers as well as the repeatability and reproducibility of the technology. In summary, the evaluated DHM assay could be efficiently implemented at different locations and facilitates interlaboratory in vitro toxicity testing of nanoparticles with prospects for application in regulatory science.


Asunto(s)
Holografía , Microscopía , Digitonina , Holografía/métodos , Humanos , Técnicas In Vitro , Microscopía/métodos , Reproducibilidad de los Resultados
6.
Cells ; 11(4)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35203295

RESUMEN

Cytotoxicity quantification of nanoparticles is commonly performed by biochemical assays to evaluate their biocompatibility and safety. We explored quantitative phase imaging (QPI) with digital holographic microscopy (DHM) as a time-resolved in vitro assay to quantify effects caused by three different types of organic nanoparticles in development for medical use. Label-free proliferation quantification of native cell populations facilitates cytotoxicity testing in biomedical nanotechnology. Therefore, DHM quantitative phase images from measurements on nanomaterial and control agent incubated cells were acquired over 24 h, from which the temporal course of the cellular dry mass was calculated within the observed field of view. The impact of LipImage™ 815 lipidots® nanoparticles, as well as empty and cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles on the dry mass development of four different cell lines (RAW 264.7, NIH-3T3, NRK-52E, and RLE-6TN), was observed vs. digitonin as cytotoxicity control and cells in culture medium. The acquired QPI data were compared to a colorimetric cell viability assay (WST-8) to explore the use of the DHM assay with standard biochemical analysis methods downstream. Our results show that QPI with DHM is highly suitable to identify harmful or low-toxic nanomaterials. The presented DHM assay can be implemented with commercial microscopes. The capability for imaging of native cells and the compatibility with common 96-well plates allows high-throughput systems and future embedding into existing experimental routines for in vitro cytotoxicity assessment.


Asunto(s)
Holografía , Nanopartículas , Bioensayo , Línea Celular , Holografía/métodos , Microscopía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...